The Social Construction of Status Value: Gender and Other Nominal Characteristics

CECILIA RIDGEWAY, Stanford University

Abstract

This article describes micro-macro processes through which simple structural conditions cause a nominal characteristic such as gender or race to acquire independent status value. These conditions are sufficient but not necessary and may or may not be involved in the actual historical origin of a given characteristic's status value. The argument assumes that a nominal characteristic becomes correlated with a difference in exchangeable resources. Blau's (1977) structural theory specifies the effects of the distribution of resources and the nominal characteristic on the likely characteristics of interactants in encounters. Expectation-states theory describes the situational beliefs about worthiness that develop among the resulting types of interactants. I combine the two theories to show where the nominal characteristic is likely to be connected with such situational beliefs, how this connection is affected by transfer and diffusion among types of interactants, and how this process can produce consensual beliefs in the characteristic's status value.

How do nominal characteristics of people such as gender or race acquire status value in a society once they are cognitively distinguished? This is a complex and important question. With status value, such characteristics become cultural prestige dimensions that operate as part of the society's stratification system (Weber [1922] 1978). As a result, the state of the nominal characteristic that an individual possesses has a significant impact on the property and positions of power which that person attains in the society.

This article examines how certain simple structural conditions are sufficient to cause a nominal characteristic to acquire an independent status value in a society. The primary goal is not simply to establish a connection between structural conditions and status values but to specify the means by which such a connection could operate. Blau's (1977) theory of how structural factors

* I would like to thank Robin Stryker, John Skvoretz, Lynn Smith-Lovin, Barry Markovsky, Edward Lawler, Mary Glenn Wiley, Janet Chaetz, Margaret Mooney Marini, Sheldon Stryker, Randall Collins, the anonymous reviewers, and the Iowa Workshop on Theoretical Analysis for their helpful comments on various drafts of this article. Direct correspondence to Cecilia Ridgeway, Department of Sociology, Stanford University, Stanford, CA 94305.

determine patterns of interaction is linked with microlevel theories about the products of such interaction. Additional arguments then describe how diffusion of these products across interactants aggregates and transforms them into system-level dimensions of status or prestige. Thus, the argument has a macromicro-macro form and concurs with Coleman (1986), who argues that for sociological analyses to be explanatory without investing systems with purposiveness, they must show how the purposive behaviors of actors mediate structural-level effects.

A nominal characteristic is any socially recognized attribute on which people are perceived to differ in a categorical rather than graduated or ordinal way. Religion, region of origin, ethnicity, race, and gender are all nominal characteristics in our society. They can be distinguished from graduated characteristics such as wealth or education on which people are perceived to vary in the degree to which they possess the characteristic.

A characteristic, whether nominal or graduated, has status value when consensual cultural beliefs indicate that persons who have one state of the characteristic (e.g., whites or males) are more worthy in the society than those with another state of the characteristic (blacks or females). Gender and race are nominal characteristics that have clearly established status value in our society. For example, people widely hold assumptions that it is more worthy or valuable to be male than female or white than black (Berger, Rosenholtz & Zelditch 1980; Broverman et al. 1972; Eagly & Wood 1982, 1985; Zimet & Zimet 1978)

Status valued characteristics have two notable aspects that any explanation must address. First, they each carry independent status value. Each characteristic has its own incremental effect on a person's relative status, so that a black woman is accorded less status than a white woman or a black man, each of whom in turn is accorded less status than a white man. At the macrolevel, such independent effects are explicitly assumed by Blau's (1977; Blau & Schwartz 1984) structural theory. At the microlevel, status valued characteristics have been demonstrated to affect independently the influence and prestige that an individual attains in goal-oriented encounters (Berger et al. 1977).

What is curious about this independence of effect is that these attributes are never encountered independently of other characteristics. No one is ever face-to-face with someone who is just a man or a woman or just black or white and who does not simultaneously have a large array of other socially significant attributes. How experience confounds characteristics makes problematic the inference of a given characteristic's distinctive effects or nature. Yet attributes are disaggregated into separate status dimensions in our consensual cultural beliefs about them.

The second notable aspect is the content of beliefs that give a characteristic status value. Extensive research demonstrates that although status characteristics in our society are seemingly quite diverse (e.g., race, education, wealth, occupation, physical attractiveness), they all affect the hierarchical ordering of encounters in similar ways (Berger, Rosenholtz & Zelditch 1980; Berger, Wagner & Zelditch 1985; Webster & Driskell 1978, 1983). This effect occurs because each characteristic is similarly associated with cultural beliefs of greater general competence in those with more valued states of the characteristic (Berger et al. 1977). Competence, here, means beliefs about an individual's general capacity
to achieve a desired end. Each status characteristic carries its own distinctive set of stereotypical traits (e.g., the stereotypical traits of men vs. women compared to those of blacks vs. whites) but also shares with other status characteristics beliefs of greater competence in those with more valued states of the characteristic. For instance, men are widely judged more generally competent than women (Eagly 1987; Goldberg 1968; Wood & Karten 1986) as are whites than blacks (Berger, Rosenholtz & Zelditch 1980; Cohen & Roper 1972) despite other differences between the stereotypes.5

Acquiring status value, then, also seems to generate beliefs about differences in general competence. These beliefs are disturbing and problematic from a social justice perspective, particularly if you believe, as I do, that actual differences in ability are uncorrelated with status characteristics.

It is particularly important to explain how competence expectations become attached to nominal characteristics. Graduated characteristics such as wealth or education, like competence expectations, order people by the degree to which they possess something. This formal similarity between the two makes it easier to imagine how people might associate them.6 But how do people associate gradations of competence with the unordered categories of a nominal characteristic like gender or race (assuming these do not already have status value)? Most of what follows applies to graduated as well as to nominal characteristics, but the argument focuses strategically on nominal characteristics because of the greater difficulty of explaining how they become evaluatively ordered.

This article’s goal, then, is to describe how a nominal characteristic could come to be associated with widely held cultural beliefs that separate the characteristic from its embedded context, accord it independent status value and with that, link it to expectations for differences in general competence. My intention is to indicate structural conditions that are sufficient to cause a nominal characteristic to acquire status value and to describe the processes these conditions engender. These conditions and processes are neither unique nor necessary.

Since the processes I describe are sufficient but not necessary, they may or may not have been involved in the actual historical processes by which a given nominal characteristic such as gender or race acquired status value in our society. However, even if we eliminate other causal factors that might have been implicated in the actual origin of a given status characteristic, the characteristic’s status value would nevertheless be maintained as long as the proposed structural conditions are present. Thus, this article is not addressed to questions of historical origin. Rather, it presents an a priori theoretical argument about the operation of some structural processes that can underpin and maintain the status value of nominal characteristics.

Since it is the development of certain consensual beliefs about a characteristic that gives it a status value, the argument begins by considering the processes that can create such beliefs. These considerations indicate structurally constrained microlevel interaction as the primary site in which status beliefs are likely to originate. The argument then turns to delineating some structural conditions that sufficiently constrain interaction to generate such consensual beliefs about a nominal characteristic.
CONSENSUAL BELIEFS ABOUT STATUS VALUE

When widely accepted cultural beliefs endow characteristics with status value, they become status (or prestige) dimensions in the larger society that join the distribution of material resources and positions of power as elements of a society’s stratification system (Weber [1922] 1978). Status dimensions are distinctive in that their causal impact on macrolevel stratification occurs primarily through their effects on microlevel interaction. Indeed, status dimensions do little other than affect the hierarchical ordering of individual-level encounters, but in this way, they place individuals in the distribution of wealth and power and shape the nature of such distributions. That status dimensions operate primarily at the microlevel suggests that interactional processes are a crucial arena for their development and maintenance.

Status dimensions lose their social meaning if they are not enacted through deference in interaction. Furthermore, despite being socially determined and consensual, status dimensions are nevertheless belief systems and therefore must be rooted in and carried by individuals to have their effects. Individuals actively use status-value beliefs, often held as implicit assumptions, as a basis for behavior in interaction, and they modify them as a result of their experiences (Berger et al. 1977). This use of status-value beliefs suggests that these beliefs are likely to be founded in the structurally constrained experience of at least some people. One can form beliefs about those one does not interact with, but people are not likely to hold widely beliefs that contradict experience gained from their interactions. Nor are these contradictory beliefs likely to remain a recurrent basis for behavior as nominal status characteristics are.

An explanation for the status value of nominal characteristics must deal with the way they are rooted in interaction. It must show how the structural conditions under which interaction occurs produce experiences sufficient to create such beliefs or not to contradict them once they are created. It is particularly important to show how structural constraints on experience could create beliefs linking states of nominal characteristics with differences in general competence, despite no individual differences in innate capacity. Interactionally created beliefs can become consensual either through a diffusion process or by being spontaneously created and maintained in many microlocations at once due to similar structural constraints operating at these locations. I will propose a combination of these processes. Thus, even though the beliefs at stake here are cultural systems, this is a structural rather than cultural argument for their development (House 1981).

STRUCTURAL CONSTRAINTS, INTERACTION, AND STATUS BELIEFS

In constructing an argument about structural constraints, interaction, and status beliefs, we can usefully link two established theories. First, Blau’s (1977, Blau and Schwartz 1984) structuralist theory provides propositions connecting the structural distribution of the population across states of an individual attribute to the probability that persons who differ in the attribute will interact. Second, expectation-states theory describes how individuals interacting in regard to a collective task use each other’s differing attributes and behavior to form status-related expectations for one another in the interactional situation (Berger et al.
1977; Berger, Conner & Fisek 1974; Berger & Zelditch 1985; Webster & Foschi 1988). To these theories, I add arguments to explain how interactional status expectations could be linked to a nominal characteristic and translated into consensual status beliefs. The argument begins by assuming a set of initial structural conditions. Structural theory, expectation-states theory, and the additional arguments are then used to show how these initial structural conditions are sufficient to give rise to the consensual beliefs that give independent status value to the nominal characteristic.

INITIAL STRUCTURAL CONDITIONS

1. An inequality develops in the distribution of an exchangeable resource among a population. A resource has exchange value when people will endure some cost (i.e., give something up) for it. The resource here is assumed to have exchange value for the entire population and thus is a kind of wealth. This excludes situationally specific resources that have exchange value in some contexts for some members of the population but not others.

 For simplicity, assume the distributional inequality is a simple dichotomous division between those with more of the resource and those with less of it, called the resource rich and the resource poor. The logic of the analysis below does not depend on the nature of the distribution of the population across the resource rich and poor categories. However, the strength of the effects it describes becomes greater the more nearly equal the distribution of the population into the two resource categories. Taking a strong case as an example, let us assume the population is evenly divided into the resource poor and resource rich categories.

 2. The level of resources possessed is a socially meaningful distinction among the population such that individuals tend to interact more with others of similar resource level. The assumption that people associate more with others that are similar in socially significant ways is basic to Blau’s structural theory and is well documented (Huston & Levinger 1978; McPherson & Smith-Lovin 1987). For example, let us assume that the strength of this associational bias is such that 50% of the time people choose an associate with similar resources and the rest of the time choose an associate randomly from those available (Skvoretz 1983).7

 3. The population is also divided into categories of a nominal characteristic, N. Again for simplicity, assume it has two categories, N∗ and Nρ, that evenly divide the population. Although people are recognized to differ in N, the difference is not socially significant in that N does not constitute a criterion for associational bias.8 Consequently, N is just a descriptive attribute that is embedded in the large array of such attributes that characterize any individual.

 To provide a starting place for the argument, a descriptive nominal characteristic is assumed to exist already. However, the process by which a characteristic comes to be recognized as a dimension on which individuals vary is itself influenced by social and evaluative factors. As the evaluative significance of any characteristic increases, it becomes more noticeable or socially salient. Social salience here is the average speed with which members of the population notice a given characteristic when it either differentiates between actors or is relevant to the goals of the setting.9
Given this feedback between evaluation and salience, it is important to note that people nevertheless can distinguish at least some individual characteristics before they acquire the type of evaluative significance that constitutes consensual status value. Attributes of appearance that are easily observed (i.e., do not require close inspection) and show clear differences among interactants are the strongest candidates for such salient descriptive characteristics. Furthermore, the recognition of a characteristic in a descriptive sense does not automatically attach consensual status value to it. The recognition of "mere difference" can lead people to evaluate those they are similar to more positively than those they are different from (Doise et al. 1972; Tajfel 1970, 1978). However, this in-group bias is quite unlike consensual status value. The latter induces all to evaluate people of one category as more worthy than those of another regardless of the category to which they themselves belong. These arguments together indicate that the assumption of a descriptively recognized nominal characteristic does not presume that the construction of status value has already begun.

A characteristic's potential to acquire independent status value, however, does vary with its salience relative to other such descriptive, nonresource characteristics recognized in the population. When a characteristic is highly correlated with another of greater salience than itself, as for instance, eye color is with skin and hair color, it is the more salient characteristics (skin and hair color) that are likely to carry the burden of any acquired status associations, leaving the less salient characteristic (eye color) without clear, independent status significance. Thus, the likelihood that a characteristic acquires independent status value varies inversely with its correlation with other more salient characteristics. Again taking a strong case as an example, let us assume that the nominal characteristic, \(N_t \), is not systematically correlated with nonresource characteristics more salient than itself.

4. There is a correlation between the nominal characteristic and the resource characteristic such that \(N_t \)'s have a greater probability of belonging to the resource rich than the \(N_h \)'s. As an example, consider that 60% of the \(N_t \)'s but only 40% of the \(N_h \)'s are resource rich. The concern is to show that however such a correlation comes about, its existence alone is sufficient in conjunction with the other assumptions to bring about status value for the nominal characteristic. To demonstrate this most powerfully, let us assume that the development of the correlation did not result in additional prior conditions that predispose the development of status beliefs about \(N \). Specifically, let us assume as an example that resources have not been initially distributed on the basis of differences in general competence and that neither the resource characteristic nor the nominal characteristic is correlated with actual differences in overall ability. The interaction and diffusion model proposed below can describe the emergence of status beliefs when an initial correlation between real or perceived competence and resources or \(N \) does exist. Under these conditions more types of encounters yield stable associations between the nominal characteristic and status value and the process proceeds more rapidly. However, the argument will be more powerful and general if it can be shown that status value will develop even without such correlations. \(^{11} \)
HETEROGENEITY AND INTERACTION

Blau's heterogeneity theorem describes how the distribution of the population across the categories of a characteristic constrains people to interact with others who differ from them on the characteristic despite their bias for similar others. Because level of resources evokes such bias, people will seek to interact with resource-similar others but will nevertheless be constrained by the distribution of available interactants to interact with a significant number of resource-different individuals. N does not bias associations. However, since N is correlated with resources, interactants people choose on the basis of resources affect the probability that the interactants will also be similar or different in N. Consequently, although individual choices only concern the resource characteristic, the structural constraints of its correlation with N and the distribution of the population among categories of N will also produce a distinctive pattern of associations among those who are similar and different in N.

There are four types of microlevel interactions that will result. Interactants can be similar in resources and N, similar in resources and different in N, different in resources and similar in N, and different in resources and in N. As we shall see, these last, doubly dissimilar encounters are the most likely to initiate independent status associations with the nominal characteristic.

Skvoretz (1983) has used biased net theory to formally specify the interdependence between heterogeneity, associational bias, and intercategory interaction posited by Blau. For illustrative purposes, his formulas can be used to specify the distribution of encounters that are likely if the initial conditions assume the values given as examples. The result suggests that 39% of encounters would be between people similar in both resources and N, 36% between people similar in resources but not N, 12% between those different in resources but similar in N, and 13% between those different in both resources and N.

INTERACTION AND SITUATIONAL STATUS BELIEFS

Expectation-states theory provides the next step in understanding how the patterns of interaction created by the initial structural conditions create independent status associations with the nominal characteristic. The theory argues that, when interactants share a collective goal, they develop a hierarchy of influence and status. This local status hierarchy results from and is maintained by the expectations the interactants develop about the likely usefulness of each interactant's contributions to the shared goal, compared to the contributions of the others. Once formed, this shared, often implicit order of performance expectations tends to become self-fulfilling by shaping an interactant's propensity to offer goal-related suggestions and the likelihood that others will attend to and positively evaluate those suggestions and accept influence from the interactant. Interactants form performance expectations for one another on the basis of certain salient attributes such as differences in external status characteristics and reward levels possessed and differences in behavior in the situation such as the propensity to offer goal-related suggestions and the confidence or assertiveness of nonverbal manner (Berger et al. 1977; Berger, Conner & Fisek 1974; Berger, Wagner & Zelditch 1985; Ridgeway, Berger & Smith 1985).
For the purpose of this article, what is most interesting about this theory is its argument that, at least when interactants are goal-oriented, they form implicit anticipations (guesses) about each other's relative competence regarding the purposes of the local encounter. Furthermore, these situational competence expectations become the basis of deference, that is, attention, positive evaluation, and acceptance of influence in the encounter. Such deferential behaviors in effect treat their recipient as a more valued contributor to the interactants' goal and, consequently, confer situational worthiness. As a result, what is created is something very much like a local, situation specific, and highly implicit version of the more general cultural beliefs that give a characteristic status value.

As described by expectation-states theory, these situational competence expectations and assumptions about worthiness (i.e., performance expectations) are attached to concrete individuals in a specific situation. They are not attached to abstract, transsituational attributes of individuals such as a nominal characteristic. Yet the development of such expectations in specific interactional situations suggests the possibility that they might, under certain circumstances, become associated with distinguishing attributes of the individuals they are attached to and generalize to other interactions. Consequently, interactions where situational competence expectations might become associated with a nominal characteristic could provide the direct experiential sites where the process is begun that creates consensual beliefs linking the characteristic with status value.

The expectation-states analysis applies only to goal-oriented encounters. Not all interactions resulting from the initial structural conditions will be clearly purposive or goal-oriented. However, for several reasons, this is not a serious problem. First and most importantly, there is no reason to assume that goal-oriented encounters will not be distributed fairly randomly across the four patterns of interactions created by the initial conditions. Second, goal-oriented encounters are generally more involved in the production and distribution of valued resources than are non-goal-oriented encounters and so have greater significance for status and stratification. Finally, goal-oriented encounters predominate over non-goal-oriented ones since people most frequently come together with a shared purpose. Consequently, the results of non-goal-oriented encounters are not likely to overwhelm or negate the effects generated in goal-oriented encounters.

The initial structural conditions specify systematic variations among interactants in level of resources and the nominal characteristic, N. According to expectation-states theory, only level of resources should initially affect the situational performance expectations that interactants form for one another in goal-oriented encounters since N does not yet have status value. Individuals will also show a number of idiosyncratic differences that might affect situational performance expectations, such as in their confidence of behavioral style or specific skills or abilities. However, in order to argue that the proposed structural conditions and processes are sufficient in themselves to give independent status value to a nominal characteristic, let us assume that none of these relevant individual differences are correlated with either the nominal characteristic, N, or level of resources.
Research indicates that when interactants differ initially in the level of exchangeable rewards they possess, they use these differences to form corresponding differences in relative performance expectations (Berger et al. 1985; Cook 1975; Harrod 1980). Thus, those who initially possess more resources are also seen as those who are more likely to contribute usefully to the goal and, in that sense, to be more competent situationally. Cook, Berger, and colleagues interpret this process as one in which interactants presume possessed rewards to be “deserved,” perhaps from past performances, and, therefore to indicate corresponding levels of situational competence. However, there may be a deeper connection between the possession of resources and expected competence involved as well.

Competence is, in essence, the ability to master events, to make events turn out in a desired manner. Viewed this way, competence is deeply related to power. If individuals have resources of power that assist them in controlling or mastering events in a given situation, then they give the appearance of competence in that situation. As exchange theory has documented (Cook 1987; Emerson 1981), possession of a superior level of valued, exchangeable resources is a basic source of power because these resources can be used to manipulate and master a wide variety of events. Consequently, superior exchangeable resources are likely to make a person appear to have a greater capacity to contribute usefully to a goal. This, in turn, makes that person appear more situationally competent independent of any individual ability.

This appearance of situational competence should develop regardless of whether the resource rich individual is assumed to have earned or deserved his or her riches because of past valuable contributions or innate ability. Furthermore, it should develop whether or not resource-rich people ever actually use their power, since it is the structural capacity to do so that gives the impression of competence in the situation. This argument suggests that beliefs about competence and the sense of worthiness that is associated with it in a goal-oriented context could develop out of direct interactional experience without requiring any assumptions about differences among the interactants in actual personal ability.

TRANSFER AND DIFFUSION

Expectation-states theory argues that the effects of one round of interactions may have carry-over effects for subsequent rounds of interactions. Research has demonstrated that the self-other performance expectations that individuals develop in one goal-oriented encounter transfer to other goal-oriented encounters and shape the hierarchies they develop (Markovsky, Smith & Berger 1984; Pugh & Wahrman 1983). Such transfers occur whenever salient attributes of an actor activated in the second encounter are similar to those in the first encounter. Attributes are activated in an encounter when they differentiate between the actors or are relevant to the task. Individuals appear to form performance expectations for actors with given characteristics on the basis of their past experience with actors who have those characteristics. The effects of these transferred expectations combine with the effects of other factors present in the actual situation to determine the resultant situational performance expectations for a given encounter.
Transfers of expectations to other actors with the same attributes are blocked only when cultural beliefs hold that the goal of the subsequent encounter is explicitly unrelated or inversely related to the goal of the earlier encounter, making experience in one irrelevant to the other. This effect means that transfers will occur even when there is no clear relevance between the goals of two encounters as long as these goals are not considered to be disassociated explicitly from one another. Consequently, in the vast majority of situations, interactants will transfer their self-other performance expectations from their previous encounter with a person who differs from them on given attributes to their next encounter with such a person.

This transfer effect creates a diffusion process where the performance expectations created in one set of encounters between selves and others of given distinguishing attributes are spread out across the population with those attributes like ripples in a lake. They spread quite widely because the initial carriers of the expectations, by treating future interactants in accord with them, also modify the expectations of those interactants, who then carry their newly modified expectations to their subsequent encounters (for discussion, see Markovsky 1988).

As with ripples in a lake, the effect of these modified performance expectations are attenuated with each transfer (Markovsky, Smith & Berger 1984). However, as long as the initial structural conditions remain, at any given point, a certain percentage of the population will be engaging in the type of interaction that created the expectations for people of certain attributes in the first place. These interactions will be constantly re-creating these expectation attribute associations and disseminating them. Consequently, as the diffusing effects of any one set of such interactions dies out it will be continually reinforced by the effects of subsequent interactions of that type, allowing the associations to accumulate over repeated experiences into stable beliefs.

Through this process, beliefs associating high or low performance expectations with people who differ in their state of a given characteristic could become widely shared and self-maintaining in a population. For this to occur, it is necessary that other types of interaction created by structural conditions do not produce opposite performance-expectation attribute associations in numbers sufficient to counteract the effects of the first type of interactions. If this condition is met, nearly consensual beliefs associating states of an attribute with relative performance expectations are likely to develop, even though at any one time only a minority of the population is engaged in interactions that directly and situationally foster such beliefs.

It is interesting to note a subtle but important change that occurs as performance-expectation attribute associations are diffused into consensual cultural beliefs. Performance expectations are assumptions about situationally specific competence and worthiness, not judgments of individuals’ competence in events in general or their overall worthiness. However, as situationally specific expectations are transferred to a different goal activity, although the strength of their situational impact is diminished, the generality of their competence implications are increased and with it, the generality of their implications of worthiness. By the time they become consensual, they have diffused across such a wide variety of goals that they are no longer specific at
all, but rather general competence expectations that interactants use to form the specific expectations appropriate to a given goal. Thus, the process of continually reinforced diffusion not only makes such competence-attribute associations consensual, it increases the generality of the differences in competence and worthiness implied, transforming them into beliefs about differences in status value.

PATTERNS OF ASSOCIATION AND THE DEVELOPMENT OF STATUS BELIEFS

The task now is to understand the implications of the development, transfer, and diffusion of performance expectations for the types of interaction engendered by the initial structural conditions. If resource level is the only assumed variable that will affect initial situational performance expectations, then the implications of an expectation-states analysis for a first round of structurally induced interactions is straightforward. In those goal-oriented encounters where the interactants differ in resource level, they should develop higher performance expectations for the resource-rich person than for the resource-poor person and accord that person greater influence and deference in the encounter. This reaction should occur regardless of whether the interactants are similar or different in N.

In those goal-oriented encounters where the interactants are similar in resource level, situational influence hierarchies should develop on the basis of the interactants' idiosyncratic differences in goal-related behaviors, manner, or specific skills (Berger & Conner 1974). However, since such differences are assumed to be uncorrelated with either the nominal characteristic or resource level, this should not result in any systematic differences between the influence hierarchies of interactants that are both rich or both poor, whether or not these interactants are similar or different in N.

What are the implications of this first round of interactions for the development and transfer of an association between performance expectations and states of the nominal characteristic? To delineate these clearly, let us consider in turn each of the structurally induced patterns of interaction.

When interactants are similar in both resources and N, the individual differences in performance expectations that develop cannot become associated with states of N since the members of any given encounter do not differ in N. Similarly, when interactants differ in resources but are the same in N, performance expectations will reflect resource level but cannot be associated with N.

When interactants are similar in resources but differ in N, the situation is more complicated. Performance expectations will be formed on the basis of idiosyncratic individual differences, resulting in higher expectations for one member than another. As in all other encounters, interactants are likely to associate these differences in performance expectations with other salient characteristics of the actors that differentiate them in a similar manner. Here N provides such a salient differentiating characteristic. Furthermore, N is assumed to be uncorrelated with any nonresource characteristic more salient than itself. Consequently, across the set of encounters of this type, N should be the most salient characteristic that consistently differentiates among the members. As a
result, there is a high likelihood that it will be states of N that interactants will associate with the particular order of performance expectations that emerge in their encounter.

Nevertheless, encounters of this type will not, over the long run, produce any stable association between performance expectations and states of N. The problem is that, since N is uncorrelated with individual differences relevant to performance expectations, the associations between states of N and high or low performance expectations should be governed by chance. As a result, there should be about as many encounters in the set where Na is linked to high performance expectations as there are where Nb is connected with low performance expectations, and similarly for Nb. The effect of the transfer and diffusion of these associations will be to cancel each other out.

Despite the microlevel associations between N and performance expectations in these types of encounters, then, they will produce no macrolevel consensual cultural beliefs associating specific states of N with high or low relative competence and worthiness. The macrolevel correlation between N and resource level does not alter this outcome. That correlation affects the proportion of resource-similar N-dissimilar encounters that resource-rich N's have compared to resource-poor N's or resource-rich N's which in turn affects the pattern of transfers and diffusions. However, it cannot affect the distribution of high- or low-performance expectation outcomes across Na and Nb in such encounters because, with no variation in resources, there is no microlevel correlation between resources and N.

The final type of interaction is between interactants who differ in both resources and states of N. Here the interactants' resource differences will create corresponding performance expectations. Because the interactants also differ in N, they are again likely to associate their orders of performance expectations with states of N just as in resource-similar, N-dissimilar encounters. However, in double (i.e., both resource- and N-) dissimilar encounters, the macrolevel consequences of these microlevel associations are different due to the correlation between resources and N.

Since the resource rich are disproportionately Na (60% in the example) while the poor are heavily Nb (60%), a greater number of double dissimilar encounters will result in high performance expectations for Na's and low ones for Nb's, rather than the reverse. In the example, 69% of these encounters should result in high-Na-low-Nb expectations and only 31% in the reverse. When these performance-expectation associations transfer and diffuse, the 31% reversals should eventually cancel out a like number of high-Na-low-Nb associations. But this still leaves in force the effects of 38% of the high-Na-low-Nb associations.

This systematic advantage for Na over Nb will not be canceled out by the effects of other types of encounters since these produce either no or equally counteracting associations between N and performance expectations. Consequently, the microlevel associations between N and performance expectations produced in double dissimilar encounters are likely to diffuse widely and become macrolevel consensual beliefs associating Na with greater general competence and worthiness than Nb. Double dissimilar encounters are only a minority of all encounters, and those encounters only produce a proportional advantage for Na over Nb. However, as we shall see, the associations they
produce spread to other types of encounters and accumulate in effect. The fact that the initial structural conditions of the society keep circulating a certain proportion of individuals into and out of double dissimilar encounters makes such encounters a kind of engine that continually pumps into the social system support for beliefs that advantage \(N_a \) over \(N_b \) in general competence and worthiness. A derivation of this argument is that the greater the number of double dissimilar encounters, the more powerful this engine of status value.

This is not quite all the story, however. While double dissimilar encounters create an associated advantage for \(N_a \)'s over \(N_b \)'s, this is situationally embedded with interactants' corresponding differences in resource level. The outcomes of such encounters associate higher performance expectations with those who are rich and \(N_a \) compared to those who are poor and \(N_b \). Thus, these encounters by themselves do not completely disaggregate \(N \) from its embedded context and give it independent standing as a carrier of competence expectations and worthiness.

For this additional step to occur, some interactants must transfer what they learn in double dissimilar encounters to encounters with resource-similar but \(N \)-dissimilar encounters. In the latter encounters, performance expectations usually develop from idiosyncratic behavioral differences. But when one of the interactants has previously been in a double dissimilar encounter, he or she has learned to associate differences in performance expectations with people who have at least one distinguishing attribute in common with those in the present encounter. On the general principle that people use whatever distinguishing information they have to form relative performance expectations, it is reasonable to suggest that people will transfer what they have learned about people who differ from them in two attributes to others who differ from them in only one of these attributes. This type of generalization to partially similar situations is comparable to the documented generalization process that occurs when people transfer expectations about types of people from situations with one type of goal to situations with other goals (Markovsky, Smith & Berger 1984).

Consider rich \(N_a \)'s who have learned from double dissimilar encounters to have higher performance expectations for themselves than for poor \(N_b \)'s. They now interact with rich \(N_b \)'s. It seems likely that they will transfer their experience with poor \(N_b \)'s to rich \(N_b \)'s and still expect themselves to be more situationally competent than the rich ones. Perhaps they will not expect to have as large an advantage in performance expectations over a rich \(N_b \) as they had over a poor one, but they are still likely to expect some advantage for themselves.

Acting on such an expected advantage is indeed likely to produce an actual situational advantage for such rich \(N_a \)'s over rich \(N_b \)'s. Since the interactants are similar in resources, the encounter's hierarchy would normally be determined by the individual differences in behavior. When \(N_a \)'s act on their expected advantage over resource similar \(N_b \)'s, the \(N_b \)'s see a display of the confident, assertive behaviors that usually lead to the attribution of situational competence (Ridgeway, Berger & Smith 1985). As a result, performance expectations usually develop favoring \(N_b \)'s over \(N_a \)'s, causing the \(N_a \)'s to defer. Even if an occasional \(N_b \) responds with even greater confidence and assertiveness than the \(N_a \), the \(N_a \) is likely to resist these behaviors as strident or uppity since the \(N_a \) presumes
that the \(N_b \) is less competent (Cohen & Roper 1972; Ridgeway 1978, 1982). Consequently, in acting on an expected advantage, \(N_b \)'s "teach" \(N_b \)'s to expect to be disadvantaged relative to resource-similar \(N_a \)'s.

This creates for the first time genuinely independent competence associations with states of \(N \). As these diffuse outward, they are not likely to be counteracted because they reinforce the expectations that result from double dissimilar encounters and are irrelevant to encounters where interactants do not differ in \(N \). The result, therefore, is likely to be consensual cultural beliefs associating greater general competence and worthiness and thus status value with \(N_a \) compared to \(N_b \).

As \(N \) acquires status value, it should lead to further differentiation of resource levels along \(N \) lines. Goal-oriented encounters are an important means by which individuals make local decisions about the distribution of collectively generated resources. Not surprisingly, such groups distribute resources in accord with their influence hierarchy (Parcel & Cook 1977). Consequently, as \(N \) begins to affect performance expectations in resource-similar \(N \)-dissimilar encounters, resources distributed by such groups will go disproportionately to \(N_a \) rather than \(N_b \) interactants. As a result, rich \(N_a \)'s will be richer than rich \(N_b \)'s and poor \(N_a \)'s will be less poor than poor \(N_b \)'s. In this way, the nominal characteristic will interpenetrate the distribution of exchangeable resources and, in doing so, further reinforce beliefs about its status value.

Conclusion

This argument suggests that when a nominal characteristic becomes correlated with a difference in exchangeable resources, the resulting structural constraints on microlevel interaction are sufficient to create, through a series of intervening steps, widely held beliefs that give status value to the nominal characteristic. Positing a connection between inequalities in resources and the status value of attributes is not original with this argument. Rather, my concern has been to explain through what processes this could occur.

Formulating such an explanation requires an analysis of macrostructural processes interacting with status processes at the microlevel in the development of macrolevel prestige or status dimensions. The argument uses Blau's (1977; Blau & Schwartz 1984) structural approach to specify the effect of distributions of resources and of the nominal characteristic on the likely characteristics of interactants in encounters. Expectation-states theory (Berger et al. 1977; Berger, Conner & Fisek 1974; Berger & Zelditch 1985) then suggests the situational beliefs about competence and worthiness that are likely to develop among such interactants. The heart of the account links these two approaches with additional arguments describing both how such situationally specific beliefs are likely to transfer and diffuse among differing types of interactants and when they will result in consensual status beliefs. The diffusion process transforms the content of such beliefs from situationally specific differences in competence and worthiness to associations between the nominal characteristic and quite general differences in these qualities that, in turn, confer status value on the characteris-
Social Construction of Status Value / 381

tic. These beliefs can develop and become consensually held status dimensions despite no differences in innate abilities between those who differ on the nominal characteristic.

The analysis suggests that encounters among those that differ both in resources and the nominal characteristic actually create sufficient, consistent associations between the nominal characteristic and status beliefs to lead eventually to the creation of consensual beliefs about the characteristic’s status value. Such encounters are a small minority of all encounters. However, since individuals are continually circulated in and out of them, they become engines that consistently propagate experiences that reinforce and maintain the status value of the characteristic. The strength of this effect depends on the specific structural parameters that hold at the time. These parameters include the population distribution across categories of the nominal characteristic and the resource variable, the size of association between the two, the nature and strength of associational biases on the resource variable and the nominal characteristic, and the degree of correlation between the nominal characteristic and other descriptive characteristics more salient than it is.

Although the argument has been presented in a priori terms, major points within it also rest on good empirical grounds and those that do not can be tested. Blau’s heterogeneity theorem and expectation-states arguments about the development and transfer of performance expectations are already well tested (Berger et al. 1985; Blau & Schwartz 1984; Cook 1975; Harrod 1980; Markovsky, Smith & Berger 1984; Pugh & Wahman 1983). To these empirically verified arguments I add new assumptions about the association of performance expectations with differentiating characteristics, the transfer of performance expectations to partially similar actors, and a series of cumulative effects of diffusion across various patterns of interaction. The association argument and the new transfer argument can be tested through laboratory experiments. Since the diffusion arguments deal with the assumed consequences of prior assumptions, they can best be examined through simulations. The next step is to carry out these tests and simulations.

In addition to these direct tests, some indirect evidence may also be available from historical data and cross-cultural data. One could chose a specific status characteristic and examine whether differences in the strength or consensus of beliefs in its status value have varied as predicted with corresponding variations in the parameters specified by the argument (e.g., the strength of its correlation with resources or the distribution of the population across categories of the characteristic). Such evidence would be suggestive rather than conclusive, however, unless there were some means available to control for possible determinants of status value other than the sufficient but not necessary ones specified in this argument.

The utility of any theoretical argument depends on its application to important problems. The processes outlined here are especially informative about the status value of gender. First, recall that a characteristic’s potential to be associated with status value through these processes varies inversely with its correlation with other nonresource characteristics of greater salience. Gender’s correlation with most salient nominal characteristics is quite low. Sex ratios do not vary too much across salient nominal categories,
although they do vary a little with age. This makes gender a highly distinguishing or salient characteristic that therefore has a high potential of being affected by the status-value processes suggested.

Second, the argument predicts that, given a correlation between resource levels and a nominal characteristic, the greater the proportion of double dissimilar encounters, the more likely consensual status value is to emerge and persist. Compared to most nominal characteristics, gender has distinctive aspects that increase the rate of cross-sex (i.e., intercategory) interaction and, therefore, the rate of double dissimilar encounters. First, gender divides the population into two fairly equal groups which, by constraining the pool of available others, puts maximum structural pressure on individuals to interact with the opposite sex. Second, gender carries sexual interest at least somewhat independently of status value. Given a predominance of heterosexuality, this creates a net bias for opposite-sex others for at least some types of association even though there may be same sex biases for other types of encounters. These two factors together indicate an unusually high rate of intercategory interaction for gender. Consequently, as long as a correlation exists between gender and level of resources, as of course it does, the processes described should be especially powerful in maintaining beliefs about gender's status value.

Since this argument is sufficient but not necessary, it may or may not describe the actual historical conditions behind the development of a given status dimension in our society. However, it does have clear, if practically problematic, implications for weakening the status value of a nominal characteristic. For the status value of a nominal characteristic to be undermined in a sustainable way, resource differences between those who differ on the characteristic must be eliminated.\footnote{16} But because the distribution of resources is often justified in terms of differences in perceived competence, the difficulty of weakening the status value of a nominal characteristic increases. Indeed, through such structurally maintained beliefs about competence, among other means, characteristics like race and gender stratify within economic groups and occupations so that women and minority physicians, for instance, earn less than their white male colleagues (Reskin 1988). Furthermore, through such beliefs nominal characteristics develop independent status value rather than remaining confounded with other individual attributes as they are in any actual interactional experience. Yet, according to the argument, small undermining changes in resource differences will affect the patterns of interaction that reinforce these beliefs, their transfer and diffusion, and subsequent distributions of resources. These undermining effects can begin to accumulate and, over time, significantly erode, if not eliminate, the strength and consensus of status beliefs about a nominal characteristic.

Notes

1. The social process by which characteristics are distinguished in the first place is a complex topic worthy of a separate paper. As I argue later, however, it is possible to assume as a starting place for analysis that some characteristics can be minimally distinguished before acquiring the sort of evaluative significance that constitutes consensual status value.
2. Many nominal characteristics such as race and even gender are socially constructed to be categorical even though individuals may actually differ in a more graduated manner on the attributes that differentiate the categories.

3. Such incremental effects on relative status are not always additive. Indeed, race and gender, for instance, sometimes have interactive effects. The point is that the addition of each characteristic has a distinct effect, additive or interactive, on the person's relative status.

4. When a person is “encountered” on paper, as in a job application, information may be available for only a few status characteristics, but even then, it is rare for a single characteristic to be presented in isolation.

5. General competence beliefs do not imply that people consider the more valued group to be better at everything. All stereotypes also associate some specific skills with the lower-status group (e.g., women are believed to be better care givers and blacks to be better athletes), although these tend to be valued less socially than the special skills linked to the high-status group. Stereotyped beliefs about general competence operate according to a “burden of proof” process (Berger, Rosenholtz & Zelditch 1980) so that men, for instance, are assumed to be more competent than women at any given task unless specific information suggests the contrary.

6. As integral aspects of societal stratification, graduated characteristics such as wealth and education could be seen as automatically associated with perceived competence by societal beliefs that legitimate the stratification system. But the point of the present analysis is to examine how such competence beliefs might be constructed in the first place. That is, why should such beliefs automatically exist? One might argue that a characteristic like education has a veridical relationship with actual competence, which is the source of societal beliefs about it, but such an argument is much more difficult to make for wealth. The present analysis will be more general and powerful if it can show how a characteristic could become linked with societal beliefs about overall competence without assuming any veridical correlation with actual competence.

7. Associational biases refer to people's behavioral choices rather than to their strongest preferences. For ordinally valued characteristics, like resources, it is not clear whether people most prefer to interact with similar others, only that they do so (McPherson & Smith-Lovin 1987). They may really prefer people with greater resources, but since such people do not want to interact with them, they may settle for choosing equal-resource associates. In addition, Skvoretz (1983) points out that people rarely have only in-group biases on a characteristic. There is usually some proportion of interactions where people try to choose out-group associates. For instance, while rich people may generally choose rich associates, they do not seek rich housekeepers. For simplicity, no active out-group bias has been assumed in the example. Doing so, however, would only increase the strength of the effects described by increasing the proportion of interactions among dissimilar people.

8. Actually, the logic of the argument below does not require that there be no biased association along the categories of N, although such a condition does make the argument more complicated. However, the purpose of the argument is to show how N acquires its own independent status value. If a characteristic biases choices of associates, it could have already developed a set of meanings that could produce status value. Regardless of whether such an argument is warranted, the present analysis will certainly be stronger if it can account for the case where the characteristic carries no implications for biased association.

9. In this article, salience refers to perceptual salience. This use of the term should not be confused with Blau's (1977) and Skvoretz's (1983) concept of structural salience, which refers to the extent to which in-group choices of associates on a nominal characteristic exceed those that would be expected by chance given the distribution of the population across categories of the characteristic.

10. Indeed, most socially important nominal characteristics such as race, gender, or ethnicity are identified by clusters of highly, but not perfectly, correlated physical attributes. In encounters, people use any of the most salient attributes in these clusters to classify those they interact with as belonging to a given category of the nominal characteristic.

11. Even if the resource characteristic were initially linked with real or perceived differences in general competence, a mediating microlevel process is still necessary to produce worthiness and competence associations with the nominal characteristic. With a 60%-40% division and a less
than perfect correlation between resources and competence, almost as many \(N'_a \)'s are resource rich and apparently competent as \(N'_a \)'s. The development of beliefs independently linking greater worthiness and competence with \(N'_a \)'s and not \(N'_b \)'s remains a complex social process.

12. The reference here is to performance expectations. However, expectation-states theory does have another well-developed concept, the status characteristic, that refers to attributes of individuals, including nominal characteristics, that carry worthiness and competence expectations in the larger society along with other specific beliefs (Berger et al. 1977). However, the theory takes status characteristics as given. It offers no explanation for how status characteristics acquire their status value.

13. The 13% double dissimilar encounters breaks down to 9% between rich \(N'_a \)'s and poor \(N'_b \)'s and 4% between poor \(N'_a \)'s and rich \(N'_b \)'s which is equivalent to 69% and 31% of double dissimilar encounters. To calculate this, recall that, with the assumed parameter values, the population has a 50% tendency to choose resource similar associates and is 30% rich and Na, 20% rich and \(N'_b \), 20% poor and \(N'_a \), and 30% poor and \(N'_b \). Following Skvoretz (1983), the percentage of double dissimilar encounters between rich \(N'_a \)'s and poor \(N'_b \)'s is the probability that in-group bias does not occur \((1-.5)\) times the probability that the first interactant is rich and \(N'_a \) (3) times the probability that the second interactant is poor and \(N'_b \) (3) plus \(.5\) times the probability that the first interactant is poor and \(N'_b \) (3) and the second interactant is rich and \(N'_a \) (3) which totals to \(.09\).

14. The degree of correlation (or consolidation) between the resource and nominal characteristics has an interesting and paradoxical relationship to key types of interaction here. The higher the correlation between the two, the fewer total intergroup encounters but the greater the percentage of double dissimilar encounters and among these, the greater the predominance of those that create high \(N'_a \)-low \(N'_b \) associations. If, for example, \(N'_a \)'s are 80% rich and 20% poor while \(N'_b \)'s are 20% rich and 80% poor and there is a 50% tendency to choose resource similar associates, then double dissimilar encounters increase to 17% of the total and of these, 94% (16/17) will be between rich \(N'_a \)'s and poor \(N'_b \)'s and only 6% between poor \(N'_a \)'s and rich \(N'_b \)'s. Thus, increasing the association between the resource and nominal characteristics decreases the dissimilar encounters, concentrates them into the double dissimilar category, and increases the net systematic advantage they yield for \(N'_a \)'s over \(N'_b \)'s.

15. In the case of poor \(N'_a \)'s and poor \(N'_b \)'s, the \(N'_b \)'s teach the \(N'_a \)'s to expect to be advantaged relative to them by acting on their own expected disadvantage through a display of unconfident, unassertive behavior.

16. If the correlation between a characteristic and resources is not eliminated, other efforts to abolish the characteristic's status value will not succeed over time. However, once the status value of a characteristic is clearly established, eliminating its correlation with resources alone will progressively reduce but not, by itself, completely abolish its status value. As when a quantity is repeatedly halved, the remaining status differences will approach but never reach 0. Also, of course, eliminating the resource advantage will not remove other possible supports for the characteristic's status value beyond those considered here. To actually abolish status value by changes in resources alone, resource differences must be reversed. The problem with this is that if such a reverse correlation with resources remains in place, it could go beyond neutralizing differences in status value to creating reverse differences.

References

Social Construction of Status Value / 385

